
Difficulties maintaining separation of structure and
presentation while using a browser based

WYSIWYG-editor

Simon Rönnqvist
Arcada

Media culture

Helsinki 2007

2

DEGREE THESIS
Arcada

Degree Programme: Media Culture

Identification number: 2170
Author: Simon Rönnqvist
Title: Difficulties maintaining separation of structure and

presentation while using a browser based WYSIWYG-editor

Supervisor: John Grönvall
Commissioned by:

Abstract:

According to recommendations by the World Wide Web Consortium (W3C) one should
structure web content (using XHTML) according to semantic meaning and separately
control how certain kinds of elements should be presented (using CSS). WYSIWYG-
editors in CMS-environments tend to cause inconsistencies because they allow their users
to within the content define the looks of each element that they are editing. A WYSIWYG
which instead is intended for structuring content semantically is the Bitflux Editor. The
thesis showed through a case study how a user of the Bitflux Editor was mislead by its
WYSIWYG-nature to mark up content according to presentation instead of semantic
meaning. (E.g. headings were used to achieve certain text styles.) Thus it was concluded
that the WYSIWYG-concept is unsuitable for CMS-usage and for web content in general,
since it causes inconsistency. The case study examined the troubadour Håkan Streng's
web site, which represented a rather typical web site with mostly text content. Also a
usability problem in WYSIWYG-editors intended for structural content was identified;
they show presentation but expect their users to think according to structure. It was
concluded that the solution to both this usability problem and to the problem with
inconsistently marked up content could be having purely structural editors, that instead
show the document structure while editing. One such concept is called WYSIWYM
(What You See Is What You Mean), which could be tried as a replacement for
WYSIWYG:s in CMS-contexts.

Keywords: HTML, CSS, CMS, WYSIWYG

Number of pages: 47
Language: English
Date of acceptance: 18.06.2007

3

EXAMENSARBETE
Arcada

Utbildningsprogram: Mediekultur

Identifikationsnummer: 2170
Författare: Simon Rönnqvist
Arbetets namn: Svårigheter med att upprätthålla separation av struktur och

presentation vid använding av en webbläsarbaserad
WYSIWYG-editor

Handledare: John Grönvall
Uppdragsgivare:

Sammandrag:

Enligt World Wide Web Consortiums (W3C) rekommendationer borde webbinnehåll
struktureras (med XHTML) enligt semantisk betydelse, medan man separat (med CSS)
bör definiera hur olika typer av element skall presenteras. WYSIWYG-editorer i CMS-
miljöer tenderar att orsaka inkonsekvent innehåll för att de tillåter sina användare
definiera utseende skilt för varje element i det innehåll som de redigerar. En WYSIWYG
som istället är avsedd för att strukturera innehåll enligt semantik är Bitflux Editor.
Examensarbetet visar genom en fallstudie hur en användare av Bitflux Editor vilseleds av
dess WYSIWYG-natur till att strukturera innehållet enligt presentation istället för
semantisk betydelse. (T.ex. rubriker användes för att åstadkomma vissa textstilar.)
Således drogs slutsatsen att WYSIWYG-konceptet är olämpligt för CMS-användning och
webbinnehåll i allmänhet, eftersom det orsakar inkonsekvent strukturering av innehållet. I
fallstudien undersöktes trubaduren Håkan Strengs webbsajt, vilken representerade en
ganska typisk webbsajt bestående av mestadels textinnehåll. Även ett
användbarhetsproblem i WYSIWYG-editorer avsedda för semantiskt strukturerat innehåll
identifierades; de visar presentation medan användaren förväntas tänka enligt semantisk
struktur. Det konstaterades att en lösning till detta användbarhetsproblem såväl som
problemet med inkonsekvent strukturerat innehåll kunde vara att använda rent
strukturorienterade editorer, som istället skulle visa semantisk dokumentstruktur under
redigeringsprocessen. Ett sådant koncept är WYSIWYM (What You See Is What You
Mean), vilket kunde testas som ersättare för WYSIWYG i CMS-miljöer.

Nyckelord: HTML, CSS, CMS, WYSIWYG

Sidantal: 47
Språk: engelska
Datum för godkännande: 18.06.2007

4

Bachelor of Arts degree thesis:

Difficulties maintaining separation of structure and presentation while using a browser

based WYSIWYG-editor

Copyright c© 2007 Simon Rönnqvist
Some Rights Reserved.

This thesis is licensed under a Creative Commons Attribution-Noncommercial-Share Alike

3.0 License available from http://creativecommons.org/licenses/by-nc-sa/

3.0/.

Accordingly, you are free to:

• to Share – to copy, distribute and transmit the work

• to Remix – to adapt the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

• Noncommercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

Permissions beyond the scope of this license may be available upon request from the
author. Contact information and material related to the thesis is found here:

http://simon.fi/thesis

5

Dedication

Thanks to my wife, son, colleagues, teachers and friends at Arcada for being around as
a support throughout the time that I’ve learned all that’s presented here and more. This
thesis would not have been the same without you!

6

Contents

1 Introduction 9
1.1 Basic concepts . 9
1.2 Case background . 10
1.3 Goal . 10

2 Theory 11
2.1 Initial visions pointing out the future . 11
2.2 History . 12
2.3 Separation of structure and presentation 14

2.3.1 Why? . 14
2.3.2 Concepts . 15
2.3.3 Semantic markup . 16
2.3.4 XHTML used in the case study 18

2.4 WYSIWYG inherited from print . 19
2.4.1 History . 19
2.4.2 Criticism of WYSIWYG . 20
2.4.3 Benefits of WYSIWYG . 20

2.5 The tools in practice . 21
2.5.1 Who controls presentation? . 21
2.5.2 Typical WYSIWYG and CMS usage 21
2.5.3 Inconsistency and re-design problems 22
2.5.4 “The Web is not WYSIWYG” 24
2.5.5 Using a WYSIWYG or something else? 26

2.6 The case . 27
2.6.1 The site . 27
2.6.2 Bitflux Editor and Flux CMS . 28

2.7 Earlier studies . 30
2.7.1 XML WYSIWYG-editors . 30
2.7.2 A cleanup approach . 30

2.8 Method . 30
2.8.1 Noting inappropriately used markup 30

7

2.8.2 Tools . 31

3 The case study 32
3.1 Inappropriately used markup . 32

3.1.1 Empty paragraphs . 32
3.1.2 Inappropriate use of line breaks 33
3.1.3 Inappropriate use of headings 36
3.1.4 Emphasize and strong emphasize combined 37

3.2 Summary . 39

4 Analysis 40
4.1 Overview . 40
4.2 Unclear cases . 40

4.2.1 Paragraphs and one heading . 40
4.3 Clear cases . 40

4.3.1 Line breaks . 40
4.3.2 Headings . 41
4.3.3 Emphasize and strong emphasize 41

4.4 Conclusion . 41

5 Summary and discussion 42
5.1 Evaluation . 42
5.2 Recommendations . 42

5.2.1 Abandon WYSIWYG for web content 42
5.2.2 Alternatives to WYSIWYG . 44

Bibliography 46

8

1 Introduction

1.1 Basic concepts

Content management systems (CMS) are often equipped with so called WYSIWYG1-
editors (from now on referred to as WYSIWYG). A WYSIWYG works in some ways
like an ordinary word processor, striving to show the content editor what the end result
would look like in real-time while editing.

A WYSIWYG often lets the content editor separately define the looks of each element.
If this kind of functionality is used, it leads to poor separation of document structure2 and
presentation3.

When defining presentation separately one defines how certain kinds of structural ele-
ments should be presented (in certain kinds of media if you wish). In practice poor sepa-
ration of structure and presentation can lead to inconsistent looks of a site. It can also lead
to problems when redesigning a site, since the presentational control isn’t centralized.
In some cases one would also want different styling for different presentational media,
which is almost impossible if the presentation isn’t defined separately.

The World Wide Web Consortium (W3C), lead by the inventor of the Web TIM BERNERS-
LEE, develops web standards such as XHTML4 (for structuring content) and CSS5 (for
defining presentation). Using web standards according to their recommendations is com-
monly referred to as standards based web design, or standards compliant web design.
Keeping structure and presentation separate is a central part of standards based web de-
sign.

1What You See Is What You Get
2Structural elements are e.g. main headings, sub-headings and links.
3Presentation is how a document should be presented in a certain media, e.g. screen, print, screen readers

or handheld devices.
4eXtensible Hyper-Text Markup Language
5Cascading Style Sheets

9

1.2 Case background

My production is the troubadour Håkan Streng’s web site. The site is quite an ordinary
kind of site, with mostly text content. The site utilizes a CMS equipped with a WYSI-
WYG for the content editor to use.

The production is an attempt to maintain separation of structure and presentation by using
an in this respect strict WYSIWYG. One of the few web based WYSIWYG:s of today that
validate the structure of the content when editing is the Bitflux Editor, and it is therefore
used in the production. It is used within Flux CMS, the web based CMS for which it’s
primarily developed.

1.3 Goal

Due to the live validation the Bitflux Editor manages to maintain a valid XHTML 1.0
Strict6 document structure in the production mentioned above. XHTML 1.0 Strict forbids
use of obsolete7 presentational markup8. The central argument of my thesis is that separa-
tion of structure and presentation cannot be maintained purely by technical means, while
using a WYSIWYG such as the Bitflux Editor.

My analysis will consist of mapping out what kinds of failures to maintain a separation
of structure and presentation occurred, in spite of the strict nature of the Bitflux Editor.
I will later also discuss possible ways to avoid these problems. The target group for
this thesis is people working with standards based web design for CMS-based sites, in
other words basically anyone making a modern web site. Basic knowledge of XHTML is
assumed, though some brief explanations are given on the XHTML-terminology needed
to understand the thesis.

6XHTML 1.0 The Extensible HyperText Markup Language http://www.w3.org/TR/xhtml1/
7Some versions of XHTML’s predecessor HTML was to some extent intended to specify presentational

aspects of a web page. This kind of features have later been deprecated and are no longer allowed at all
in XHTML 1.0 and 1.1 Strict.

8XHTML, the predecessor HTML and even it’s predecessor SGML (used in print) are commonly referred
to as markup.

10

2 Theory

2.1 Initial visions pointing out the future

To realize how to build sustainable web content and applications one needs to be aware
of the initial visions that still point the direction in which the Web is developing. These
visions are well described by the inventor of the web, TIM-BERNERS LEE:

I have a dream for the Web...and it has two parts.

In the first part, the Web becomes a much more powerful means for col-
laboration between people. I have always imagined the information space as
something to which everyone has immediate and intuitive access, and not just
to browse, but to create. The initial WorldWide Web program opened with an
almost blank page, ready for the jottings of the user. Robert Cailliau and I
had a great time with it, not because we were looking at a lot of stuff, but
because we were writing and sharing out ideas. Furthermore, the dream of
people-to-people communication through shared knowledge must be possible
for groups of all sizes, interacting electronically with as much ease as they do
now in person.

In the second part of the dream, collaborations extend to computers. Ma-
chines become capable of analyzing all the data on the Web – the content,
link, and transactions between people and computers. A “Semantic Web”,
which should make this possible, has yet to emerge, but when it does, the day-
to-day mechanisms of trade, bureaucracy, and our daily lives will be handled
by machines talking to machines, leaving humans to provide the inspiration
and intuition. The intelligent “agents” people have touted for ages will finally
materialize. This machine-understandable Web will come about through the
implementations of a series of technical advances and social agreements that
are now beginning.

11

Once the two-part dream is reached, the Web will be a place where the whim
of a human being and the reasoning of a machine coexist in an ideal, powerful
mixture.

[Berners-Lee(2000), p. 157-158]

Today we have the concept of “Web 2.0”1, which is a collection of many different con-
cepts that characterize modern web applications. Among these things are features for
collaboration between people and machine readable content, letting content flow auto-
matically in between applications. While this is a step in the right direction, it’s not all
that BERNERS-LEE had in mind. The Semantic Web is still only in its infancy since im-
portant technologies especially made for structuring machine readable content, such as
RDF (Resource Definition Format), are not yet used on the vast majority of the web sites
of today.

Some kinds of CMS-implementations could be compared to the tools BERNERS-LEE de-
scribe, letting an ordinary web user edit content. As mentioned in 1.1 on page 9 many
CMS:es are equipped with WYSIWYG:s that quite often let users produce poorly struc-
tured web content. In a web evolving towards being semantic, ordinary human readable
web content should be structured in a semantic way as well, and not a presentational. (Not
only RDF but also XHTML is to be used semantically.) Semantically structured content
means that the markup tells what the different parts of the content are, and not how they
should be presented. For instance it can tell that a certain part of content is a main head-
ing, but not how it should look. This will be described further in 2.3 on page 14, but
before moving there we’ll take a look at this from a historical perspective.

2.2 History

One of the foremost CSS experts ERIC MEYER describes how web design came to be, in
the days before the proper tool for the job (CSS) was available:

Back in the dimly remembered, early years of the Web (1990-1993), HTML
was a fairly lean language. It was composed almost entirely of structural
elements that were useful for describing things like paragraphs, hyperlinks,
lists, and headings. It had nothing even remotely approaching tables, frames,
or the complex markup we assume is necessary to create web pages. HTML
was originally intended to be a structural markup language, used to describe
the various parts of a document; very little was said about how those parts

1O’Reilly article defining Web 2.0 http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html

12

should be displayed. The language wasn’t concerned with appearance — it
was just a clean little markup scheme.

[Meyer(2006), p. 1]

Instead the early browsers controlled the page styling internally only, so that the styling
for each kind of element was up to the user to decide, not the content author who only
was equipped with tools to structure the content. [Lie and Bos(1999)]

As the number of sites increased, so did the demand for new HTML elements
that would each perform a specific function. Authors started demanding that
they be able to make text boldfaced or italicized.

At the time, HTML wasn’t equipped to handle those sorts of desires. You
could declare a bit of text to be emphasized, but that wasn’t necessarily the
same as being italicized — it could be boldfaced instead, or even normal
text with a different color, depending on the user’s browser and preferences.
There was nothing to ensure that what the author created was what the reader
would see.

As a result of these pressures, markup elements like and <BIG>
started to creep into the language. Suddenly, a structural language started to
become presentational.

[Meyer(2006), p. 2]

Not only did browsers start implementing some purely presentational markup. In 1995,
the typographer and early web designer, DAVID SIEGEL published an on-line tutorial ex-
plaining techniques to work around the limitations of HTML, enabling design of actual
magazine-like layouts on the Web. The year after he published his book “Creating Killer
Websites”, which was the first book that seriously treated the subject web design. Unfor-
tunately this was the advent of many common practices that seriously conflict the initial
ideas of HTML as a structural language. [Zeldman(2001), p. 117-118]

Even today we can see tables and invisible spacer images being used to build up lay-
outs, although using CSS is a much more convenient way to make layouts, without using
presentational markup.

Since 1996 the usage of CSS has been a recommendation by the W3C. [Meyer(2006), p.
3] And since year 2000 all new mainstream browsers have had sufficient support for web
standards such as CSS, to allow web designers to build up layouts using CSS instead of
presentational markup. [Zeldman(2001), p. 121-122]

Browsers with insufficient support for CSS-layouts are now very rarely used, since their
use died out over the last couple of years. Even for those older browsers the content

13

of CSS-designed pages can still be left accessible (though unstyled). [Zeldman(2006), p.
171-172] Therefore there is seldom any valid reason besides lack of up-to-date knowledge
not to embrace CSS-design and semantically structured markup.

2.3 Separation of structure and presentation

2.3.1 Why?

The core reasons to keep structured content and presentation separate are to keep con-
tent accessible to a wide variety of agents (usually browsers) and to keep content easily
reusable “across multiple delivery contexts”, as stated in W3C:s recommendations:

The Web is a heterogeneous environment where a wide variety of agents pro-
vide access to content to users with a wide variety of capabilities. It is good
practice for authors to create content that can reach the widest possible au-
dience, including users with graphical desktop computers, hand-held devices
and mobile phones, users with disabilities who may require speech synthe-
sizers, and devices not yet imagined. Furthermore, authors cannot predict
in some cases how an agent will display or process their content. Experi-
ence shows that the separation of content, presentation, and interaction pro-
motes the reuse and device-independence of content; this follows from the
principle of orthogonal specifications (§5.1) http://www.w3.org/TR/
2004/REC-webarch-20041215/#orthogonal-specs.

This separation also facilitates reuse of authored source content across mul-
tiple delivery contexts. Sometimes, functional user experiences suited to any
delivery context can be generated by using an adaptation process applied to
a representation that does not depend on the access mechanism. For more
information about principles of device-independence, see [DIPRINCIPLES]
http://www.w3.org/TR/2004/REC-webarch-20041215/#DIPRINCIPLES.

[Group(2004)]

In other words pages need to have well structured content in “...today’s more sophisticated
web, where pages are frequently assembled by publishing tools and content must flow
back and forth from database to web page to wireless device to print...”, as described by
web standards expert and co-founder of The Web Standards Project2 JEFFERY ZELDMAN.
[Zeldman(2006), p. 105]

2The Web Standards Project or WaSP is a grassroots coalition of web designers promoting web standards,
one of its greatest achievements was helping to end the Browser Wars by persuading Microsoft and
Netscape to support the same technologies in their browsers. http://www.webstandards.org

14

Today also many countries worldwide either require or recommend that web pages of
governmental institutions and such should comply with certain accessibility guidelines,
usually WCAG 1.03 by the W3C. [Initiative(2006)] Many big companies such as banks
also seem to use standards based web design, to not shut out any potential customers and
to most often even ensure them a smooth web experience.

Complying with accessibility guidelines such as WCAG 1.0 includes separation of struc-
ture and presentation. [WCA(1999)] Working drafts of the upcoming version WCAG 2.0
have been published on the Web Accessibility Initiative web site http://www.w3.
org/WAI/.

2.3.2 Concepts

Slightly different words are used for the same concepts. Some talk of separation of con-

tent and presentation, some of structure and presentation. To be precise one could talk
about ’structured content’, but to stick with an established terminology we’ll go with just
structure, as used by ZELDMAN. He also describes behavior as one third component,
which basically means scripted client side features, but since the web pages discussed in
this thesis lack client side scripting it is not discussed any further. (In some cases separa-

tion of content and presentation is also used for server-side separation, when storing data
separately in databases. However this thesis is only concerned with the pages fed to the
client.)

3Web Content Accessibility Guidelines 1.0 http://www.w3.org/TR/WAI-WEBCONTENT/

15

Figure 2.1: Structure presentation and behavior are the three components of web stan-
dards based pages. The technologies that build up each of the components are
listed below the bubbles. [Zeldman(2006)]

2.3.3 Semantic markup

Since this thesis concentrates on the content generated by a web based WYSIWYG inside
of a CMS, and not separate presentation in the form of CSS (which is made by the web
designer), CSS is only presented as a concept while as XHTML is presented a bit further
here.

As stated repeatedly earlier separation of structure and presentation is important. Under-
standing the concept presentation is pretty straight forward, but what is meant by struc-
turing content semantically?

If you treat HTML or XHTML as a document-formatting tool, you will be
sorely disappointed. There is simply not enough capability built into the lan-
guages to allow you to create the kinds of documents you might whip up with

16

tools such as FrameMaker and Word. Attempts to subvert the supplied struc-
turing elements to achieve specific formatting tricks seldom work across all
browsers. In short, don’t waste your time trying to force HTML and XHTML
to do things they were never designed to do.

Instead, use HTML and XHTML in the manner for which they were de-
signed: indicating the structure of a documents so that the browser can then
render its content appropriately. HTML and XHTML are rife with tags that let
you indicate the semantics of your document content, something that is miss-
ing from or often badly implemented in word processors and page-layout
programs. Create your documents using these tags and you’ll be happier,
your documents will look and work better, and your readers will benefit im-
mensely.

[Musciano and Kennedy(2006), p. 10]

Web browsers have their default ways of displaying different kinds of content, however
one cannot rely on this to be the same in each and every browser. Therefore controlling
the looks of a certain element is much more reliable using CSS. Besides that, defining
elements according to their default looks in certain browsers breaks their semantic value.
[Zeldman(2006), p. 85, 173]

Presentationally used markup4

As mentioned in 2.1 semantically structured content means that the markup tells what the
different parts of the content are, and not how they should be presented. Semantic markup
could be thought of as a kind of meta-data (data about data).

We are all used to thinking that <h1> means big, means bullet, and
<blockquote> means, “indent this text”. Most of us have scribbled our share
of HTML that uses structural elements to force presentational effects.

Along the same lines, if a designer wants all headlines to be the same size, she
might set all her headlines as <h1>, even though doing so makes no structural
sense and is the kind of thing usability consultant Jakob Nielsen would call a
sin if he weren’t too busy worrying about link colors...

[Zeldman(2006), p. 172]

Using
 to add space above or under other elements is also not a semantic way of
using markup, this should be achieved using CSS instead. [Zeldman(2006), p. 172]

4This section assumes basic knowledge of HTML or XHTML, please refer to 2.3.4 on the following page
for a brief introduction

17

Elements chosen according to their supposed presentational properties can be considered
presentational markup, even though they unlike entirely presentational and deprecated
markup such as can be used semantically. Using markup with the intention to
control presentation is in fact breaking the separation of structure and presentation.

2.3.4 XHTML used in the case study

Although basic knowledge of XHTML is assumed one can indeed follow the case study
by being familiar with the concepts previously presented, along with just the few XHTML
elements. Therefore those few XHTML elements are presented here, along with a very
brief explanation of how XHTML (and in fact other XML) documents are structured:

All of the XHTML elements below except for line break and image wrap content. Wrap-
ping means that they consist of one opening tag <something> and a closing tag </some-

thing>, with the wrapped content in between the tags. The wrapped content can also
contain other tags. XHTML-tags (also referred to as markup) can also contain attributes
according to this format <sometag someattribute=”something”>, as far as this thesis is
concerned the attributes in the code samples can be ignored, since they’re not discussed
any further.

<p> paragraph - wraps paragraphs

 line break - used to enforce line breaks in certain places in a text

<hn> heading - wraps headings, n is a number representing the heading level, e.g.
<h1> for main headings, <h2> for sub-headings and so forth

 emphasize - wraps emphasized words or phrases

 strong emphasize - wraps strongly emphasized words or phrases

& unordered lists - wraps the whole unordered list (normally presented as
a bulleted list) and wraps each list item

<a> anchor - wraps linked words

 image - refers to an image document that will be shown where the tag is
placed

18

2.4 WYSIWYG inherited from print

2.4.1 History

The WYSIWYG-concept was initially invented for the Pre-Press industry, long before the
Web was around. Here are some historical notes as described in Wikipedia:

• Before the invention of WYSIWYG, all text and control characters appeared in
the same typeface and style with little indication of layout (margins, spacing, etc.).
Users were required to enter code tags to indicate that some text should be in bold-
face, italics, or a different typeface or size. These applications used an arbitrary
markup language to define the tags. Because of its simplicity, this method remains
popular for some basic text editing applications.

• The phrase was originated by a newsletter published by Arlene and Jose Ramos,
called WYSIWYG. It was created for the emerging Pre-Press industry going elec-
tronic in the late 1970s. After 3 years of publishing, the newsletter was sold to
employees at the Stanford Research Institute in California. The first conference on
the topic was organized by Jonathan Seybold and the first technology popularized
at Xerox PARC during the late 1970s when the first WYSIWYG editor, Bravo, was
created on the Alto. The Alto monitor (72 pixels per inch) was designed so that one
full page of text could be seen and then printed on the first laser printers. When
the text was laid out on the screen 72 PPI font metric files were used, but when
printed 300 PPI files were used - thus one would occasionally find characters and
words slightly off, a problem that continues to this day. (72 PPI came from a new
measure of 72 "PostScript points" per inch. Prior to this, the standard measure of
72.27 points per inch was used in typeface design, graphic design, typesetting and
printing.)

• Seybold and the researchers at PARC were simply re-appropriating a popular catch
phrase of the time originated by "Geraldine", Flip Wilson’s drag persona from
Rowan & Martin’s Laugh-In in the late 60s and then on The Flip Wilson Show,
(1970-1974).

• The Apple Macintosh system was originally designed so that the screen resolution
and the resolution of the dot-matrix printers sold by Apple were easily scaled: 72
PPI for the screen and 144 DPI for the printers. Thus, the on-screen output of pro-
grams such as MacWrite and MacPaint were easily translated to the printer output
and allowed WYSIWYG editing. With the introduction of laser printers, resolu-
tions deviated from even multiples of the screen resolution, making WYSIWYG
harder to achieve.

19

• Charles Simonyi, the PARC researcher responsible for Bravo, joined Microsoft in
1981 to start development of application programs at Microsoft. Hence, Bravo can
be seen as the direct ancestor of Microsoft Word.

[wik(2007)]

2.4.2 Criticism of WYSIWYG

Already in 1996 the Seybold Report on Publishing Systems published an article by typog-
rapher CONRAD TAYLOR that examined what WYSIWYG or more precisely DTP had
done to the print industry, and what it was doing to the Web.

According to the the article damage was generally done to typography concerning tasks
that were better off handled automatically rather than manually through a WYSIWYG.
For example the TEX5 typesetting system does automatic H&J (hyphenation and justifi-
cation) much better than WYSIWYG-editors do, since its algorithms take the text as a
whole into account when applying H&J after the text is already written. Also many other
problems such as lack of automatic pagination were brought up in the article.

Better H&J was also asked for in Web browsers, a need which has not even been ad-
dressed by the major browser vendors of today. Another problem mentioned that also
but not solely concerns the Web is the need for structural markup in order for the content
to be easily re-publishable in different contexts. SGML (Standard Generalized Markup
Language), from which HTML was later derived, was already before the breakthrough of
WYSIWYG an alternative that addressed this need. Early WYSIWYG:s however didn’t
utilize SGML or any similar approach, and even today most WYSIWYG:s allow their
users to produce unstructured presentationally marked up content.

Another totally different kind of problem that the use of WYSIWYG poses is that people
might end up with inappropriate tasks. For example, if a person doing the final layout
in a WYSIWYG gets an unstructured text, he or she might not have enough knowledge
about subject to apply a sensible styling. Likewise a content editor might not have the
proper design skills to do the final styling of the text. These are also problems present
when working with content on the Web.

[Taylor(1996)]

2.4.3 Benefits of WYSIWYG

According to TAYLOR the main appeal with WYSIWYG is that it offers the users superior
cybernetics, by which he means feedback and control. However this is only to the extent

5LATEX and therefore also LYX, the word processor used for this thesis, are using TEX for typesetting

20

that the feedback and control is authentic, and due to the problems discussed earlier there
are plenty of situations where this is not the case. There are however exceptions to this:

Of course, there are clearly areas of publishing where the enhanced design
cybernetics of WYSIWYG are all to the good. This is particularly the case
for short, one-time, design-intensive publications where the precise spatial
relationship of type and picture elements is critical for aesthetic reasons, such
as advertisements, brochures, posters and consumer magazines...

...A WYSIWYG view is also valuable to designers of information products
such as training and procedures manuals, user guides and business forms. In
such products, the arrangements of words on a page is a way of reinforcing
their meaning, so information designers take care not to set confusing line or
page breaks, and may need illustrations to be positioned in a precise relation-
ship both to the accompanying text and to captions.

[Taylor(1996)]

2.5 The tools in practice

2.5.1 Who controls presentation?

In the days when the presentation of web pages was fully controlled internally in the
browsers, but a demand for more control over presentation started to grow among web
page authors there was an intense discussion on to whom the control over presentation
belonged. [Lie and Bos(1999)]

With today’s standards based web pages a compromise is reached, where the web pages
can have a default presentation defined by using CSS, but the user can override those
defaults by using CSS of her own as internal style sheets in the browser.

In today’s web, site content and design are often authored by different people, in which
case the question arises to what extent the content editor should be able to control presen-
tation. The answer is of course different for different sites, but let’s concentrate on rather
typical sites such as the one in the case study.

2.5.2 Typical WYSIWYG and CMS usage

Quite commonly web sites are using a CMS, with HTML/XHTML-templates and CSS
designed by a web designer. The CMS lets the user edit certain areas of the content which

21

in the end are inserted into the templates that make up the whole page sent to the browser.
So usually the content editor can’t touch anything outside of certain areas of the pages.

Often the CMS is equipped with a WYSIWYG, allowing the content editor to see a pre-
view of the page while editing. Quite often this WYSIWYG lets the content editor control
also the presentational properties of the areas that are edited. This of course compromises
the separation of structure and presentation. The external CSS for the site is out of the
WYSIWYG’s control, while the WYSIWYG is still able to control certain content areas.

2.5.3 Inconsistency and re-design problems

Not having the control over presentation centralized for the whole site can lead to incon-
sistent looks. [Meyer(2006), p. 5] This was noted when I worked with a re-design of
Arcada polytechnic’s web pages. We tried our best to comply with web standards but
having hundreds of pages with messy markup it’s not an easy task. The pages would have
to be cleaned up one by one and then the WYSIWYG (or other kind of editor) provided
would have to be changed or configured to not allow such mistakes in the future. Educa-
tion of the content editors would most probably also be needed, not to mark their texts up
according to desired presentation but instead semantically.

Below is a comparison between one page with properly marked up headings and another
in which of the headings are just made bold by the content editor. 6

Figure 2.2: In this page the headings have been marked up correctly

6The screen shots of the pages were taken from a working copy of the site, not the final version.

22

Figure 2.3: In this page some of the headings are not marked up as headings, but only
made bold which semantically and even visually speaking doesn’t signify
them much from ordinary text

It’s hard to tell for sure whether the content editor chose to only make some of the head-
ings bold by chance, or with the intent to have them looking in a certain way. Let’s pretend
that it would have been with the intent to affect their presentational properties, and that
affecting this would have been something that we’d allow the content editor to do. In such
a case we would have had to provide a tool to control certain parts of the centralized pre-
sentation (CSS), a so called Presentation Management System (PMS). [Lombardi(2004)]
In this way we could help keeping the look of the site consistent.

However in this case we didn’t want to let the content editors control the styling. In fact
the control that they did have was even deceptive, since those pages were written before
the re-design of the site and looked quite different then. Inconsistently marked up content
can even pose bigger problems than we faced with Arcada polytechnic’s web site:

On large sites created by multiple designers and developers, each designer
might use different nonstandard tags, making it impossible to gather all the
data and reformat it according to a more useful scheme. (Imagine a public
library where books were indexed, not by the Dewey Decimal System, but
according to the whims of Joe, Mary, and various other cataloguers, each
making up their own rules as they went along.)

[Zeldman(2006), p. 86]

23

Another benefit of a centralized design is performance. Since the centralized CSS file
is downloaded only once, only structured content will have to be downloaded repeatedly
while browsing around a site. This means a faster and smoother web experience for
your visitor, and less server load, bandwidth usage and less traffic costs for your site.
[Zeldman(2006), p. 235]

2.5.4 “The Web is not WYSIWYG”

It is not only the possibility of future re-designs that can render the WYSIWYG-concept
deceptive. As discussed earlier today’s web content is more and more expected to be
adaptable for different kinds of media and might also be automatically reused (syndicated)
in other web pages.

Any given Web design will look very different on this variety of devices:
clearly, WYSIWYG is dead. Indeed, looking different is a feature, not a bug,
since an optimal user experience requires adjustments to the characteristics
of each device. The more specialized or low-end the device, the stricter the
requirements for Web content to morph into something suited for the plat-
form. The only way to make this happen is for designers to give up full
control and let the presentation of their pages be determined by an interplay
of page specifications and the preference settings and other characteristics of
the client device.

[Nielsen(1997)]

24

Figure 2.4: A WYSIWYG usually shows a screen-like presentation of the content that is
edited, however it only controls document structure (usually XHTML) so any
adjustment to the presentation goes into the wrong place (i.e. not the CSS).
How the same presentational adjustment will look in a different presentational
context or browser gets very unpredictable. This also easily damages the se-
mantic structure of the document which otherwise could ensure a consistent
look when adapted to different presentational contexts.

25

2.5.5 Using a WYSIWYG or something else?

In order to be really honest with the content editor one shouldn’t even use a WYSIWYG
at all, but instead maybe a WYSIWYM7, wiki-style editor or something similar such as
Textile8. A WYSIWYM would show what the different structural elements are, not how
they’ll eventually be presented. Recently a web based WYSIWYM called WYMeditor9

was released, and new versions are released frequently. A wiki-style editor lets the user
edit plain text with a somewhat simplified markup compared to HTML or XHTML.

But there are those trying to avoid the problems with messy markup while still using a
WYSIWYG. The Bitflux Editor is one such example, being one of the few web based
WYSIWYG:s that validate the markup created as strict10 XHTML, that way encourag-
ing use of semantic markup. XHTML 1.0 and 1.1 Strict forbid usage of presentational
markup, therefore using strict XHTML and not XHTML 1.0 Transitional is a technical
means to try avoiding presentational markup. [Zeldman(2006), p. 149]

Knowing this I asked the lead developer of the Bitflux Editor, CHRISTIAN STOCKER why
he after all decided to make it a WYSIWYG:

...it’s just that our customers ask for WYSIWYG and not WYSIWYM. They
mostly do not care about correct semantic usage, but with BXE (Bitflux Edi-
tor) you can at least force it somehow...

I know LYX and wrote my diploma thesis with it. It’s great and very useful,
but I don’t see much of a difference between that and a strict BXE. BXE
shows what you mean in a manner that it will look like what you will get
on the web page. If you reuse the content in a different place (PDA, PDF,
whatever), it will of course look differently, but I think the users can abstract
that.

[Stocker(2005)]

It seems like having a WYSIWYG in a CMS is something that people expect, probably
due its familiar word-processor like interface and its seemingly good cybernetics11. Since
WYSIWYG:s are commonly used, it’s worth exploring further how well a WYSIWYG
producing strict XHTML will do concerning separation of structure and presentation.
This will be done with the Bitflux Editor in the case study of this thesis.

7What You See Is What You Mean, a concept founded for the very word processor with which this thesis
was written, LyX http://www.lyx.org/

8http://textism.com/tools/textile/
9http://www.wymeditor.org/

10The Bitflux Editor doesn’t validate the markup precisely according to the XHTML 1.0 Strict schema, but
in practice no invalid XHTML 1.0 Strict markup was found in the case study. The RelaxNG schema
that it uses by default for XHTML-validation is found here: http://svn.bitflux.ch/repos/
public/fluxcms/trunk/inc/bx/doctypes/schemas/xhtml/xhtml-basic.rng

11See 2.4.3 on page 20

26

2.6 The case

2.6.1 The site

The site in the case study, the troubadour Håkan Streng’s web site, is a quite ordinary site
consisting of mostly static pages with mostly text content that the content editor can edit.
It is in that sense quite similar to Arcada polytechnic’s site discussed in 2.5.3 on page 22,
but has much fewer pages.

Figure 2.5: The front page of the site, the first level of the navigation three is visible in the
right hand column. Only the Swedish version of the site is studied, since it’s
the only language in which all of the pages are available.

27

The whole navigation three of the site translated into English:

• Current events

• Records

– CD

• Bibliography

• Biography

– Personal information

• Gallery

• Diary

• Contact

• Links

• Front page

The pages CD, Gallery, Diary and Contact are not a part of the case study, since they have
not been edited by the content editor using the Bitflux Editor. CD uses special formatting,
not achievable through the Bitflux Editor, Gallery is controlled through a gallery feature
in Flux CMS and not a WYSIWYG, Diary is driven by a blogging tool within Flux CMS
(not using the Bitflux Editor) and Contact is a contact form, not formatted by the content
editor.

The rest of the pages are quite ordinary static web pages, edited by the content editor
through the Bitflux Editor. These pages are the ones being examined in the case study.

2.6.2 Bitflux Editor and Flux CMS

The pages of the site are managed through Flux CMS12, and the pages are edited with the
WYSIWYG Bitflux Editor13 inside of the CMS.

12http://www.flux-cms.org/
13http://bitfluxeditor.org/

28

Figure 2.6: The Bitflux Editor covers the area with the top border with the text “BITFLUX
EDITOR”, the rest of the web page with a top border reading “Flux CMS” is
Flux CMS, that embeds the Bitflux Editor. The has been edited and the pop-up
menu enables the user to change element type. (Refer to 2.3.4 on page 18 for
explanations on some of the element types.)

A stable development snap-shoot of Flux CMS, version 1.5.0-dev/r8109 is used, since
much development has happened since the last official release at the time of this writing.
However as far as this thesis is concerned, the nature of the CMS used doesn’t matter as
long as it doesn’t pose problems concerning the separation of structure and presentation.
Flux CMS handles this perfectly and is therefore not discussed any further.

Bitflux Editor version 1.1.0-dev/200609280330/r1517 was included with the Flux CMS
version in question and was therefore used to edit the pages. In the case study the Bitflux
Editor produced code that validates as XHTML 1.0 Strict, which doesn’t allow markup
with explicitly presentational properties. Exceptions are the tags and <i> that rep-
resent bold and italic styling and lack semantic meaning. The Bitflux Editor’s bold and
italic buttons14 were by default configured to produce and <i>, to make the Bit-
flux Editor only produce semantic markup it was reconfigured to produce and
 instead, which have the semantic meanings strong emphasize and emphasize, but
still the same default styling as and <i>. While it’s slightly deceptive to make the
bold and italic buttons produce semantic markup, it’s however common practice in many
14the B and I buttons right from the pop-up menu in figure 2.6

29

WYSIWYG:s and usually appropriate when marking up ordinary text.

The Bitflux Editor allows one to configure schemas defining exactly what kinds of ele-
ments are allowed where. However this was not used to prevent presentational usage of
markup, since we want to figure out in what ways the content editor uses valid XHTML
1.0 Strict markup for presentational purposes.

2.7 Earlier studies

2.7.1 XML WYSIWYG-editors

The Bitflux Editor is actually a general XML-editor, even though only used for XHTML
in the case study. There has been a bit of research about XML editors with WYSIWYG
capabilities, mostly with non web based ones. Many of them have capabilities to view
multiple presentations, which makes sense since XML documents (including XHTML
documents) should be structured data being presentable in multiple ways. Some are also
in practice more like that what has been referred to as WYSIWYM, though being called
WYSIWYG, probably because WYSIWYM is a comparably unknown word. However
none of the research explored the problem with the user using markup in a presentational
manner. [Schrage(2004)] [Ho(2005)]

2.7.2 A cleanup approach

Research was also found on trying to clean up messy code produced by WYSIWYG:s
afterwards. Even though this might be an interesting approach, especially when doing a
redesign having a lot of messy content from before, it is not focused on messy code pro-
duced solely by the content editor’s presentational usage of markup. [Spiesser and Kitchen(2004)]

2.8 Method

2.8.1 Noting inappropriately used markup

Since no applicable research method was found from earlier research on similar subjects,
a new one had to be developed to suite our needs:

The content editor got brief instructions on how to mark the content up semantically. The
headings were taken as an example since they are the most commonly used element that
easily could be wrongly used. Instructions were given to assign headings starting with
first level headings, then second level and so on.

30

In the case study we’ll go through the ways in which different pages in the case, Håkan
Streng’s web site, failed to keep separation of structure and presentation intact. In prac-
tice this means that we’ll look at in which ways the content editor after all has used the
WYSIWYG to control presentational aspects of the pages instead of structural.

Markup that is inappropriate from a structural point of view will be noted. Due to a
lot of markup not producing any visual result, therefore not being able to be called pre-
sentational, the results are sorted into markup producing a visible result and markup not
producing any visible result. Markup not producing any visible result is likely to have
been added by mistake, and therefore can tell us something about what kinds of uninten-
tional mistakes that the content editor has made. This information can be useful when
analyzing the inappropriately used markup that did cause visual results. Not all of it is
necessarily to be considered presentationally used, some of it may have been added by
mistake as well.

2.8.2 Tools

The pages’ presentational outcome is only checked in the Mozilla Firefox15 browser, since
that’s the only browser in which the Bitflux Editor works. The Bitflux Editor’s WYSI-
WYG view utilizes the web browser’s rendering engine and therefore shows the pages
exactly like Firefox would with the readily edited page. Possible differing presentational
results in other browsers are highly unlikely to have been intentionally made by the editor,
since they wouldn’t have been shown while editing.

Since the pages were edited using different versions of Firefox they were checked with
Firefox 1.0.8, 1.5.0.12 and 2.0.0.4 to make sure that no rendering differences were to be
found. In the case study the code and presentation is studied using the Firefox extension
Firebug16 1.05 in Firefox 2.0.0.4, as shown in the figures in the case study. The operating
system used is Kubuntu17 Linux 7.04 Feisty Fawn.

15http://www.mozilla.com/firefox/
16http://www.getfirebug.com/
17http://www.kubuntu.org/

31

3 The case study

3.1 Inappropriately used markup

3.1.1 Empty paragraphs

In five instances empty paragraphs were used, making empty space. In figure 3.1 and
in one other instance only one empty paragraph was used, while as in two of the other
instances two and three empty paragraphs were used creating even more empty space. In
figure 3.2 an empty heading was used in combination with an empty paragraph.

Figure 3.1: On the upper half of the picture you see a box marking the empty paragraph
as displayed on the web page, below that you see a part of the XHTML-code
where the code making up the empty paragraph is marked with a line.

32

Figure 3.2: An empty heading in combination with an empty paragraph, making empty
space

3.1.2 Inappropriate use of line breaks

In nine instances line breaks were inappropriately used. In figure 3.3 and two other in-
stances a line break was put at the end of a paragraph, while in figure 3.4 and one other
similar case a line break was put at the end of an unordered list, none of them causing
any visual result. In two of the instances the line breaks were put at the beginning and in
one at the end of a heading, both kinds occur in figure 3.5, when put at the beginning of a
heading making space above the heading’s text, but when put after the heading making no
visual result. In figure 3.6 two line breaks were put above a an image, adding extra space.

33

Figure 3.3: A line break put at the end of a paragraph, causing no visual result

Figure 3.4: Line break put at the end of a list item, causing no visual result

34

Figure 3.5: Line breaks added in the beginning and the end of the heading, adding more
space above it, but none underneath it

35

Figure 3.6: Two line breaks adding space above the image with the signature

3.1.3 Inappropriate use of headings

In four instances the choice of heading depth was semantically incorrect, all are shown in
figure 3.7.

In one additional instance, as shown in figure 3.2, an empty heading was used, making
empty space.

36

Figure 3.7: The first third level sub-heading is obviously inappropriately used since it’s di-
rectly followed by a second level sub-heading instead of some content which
it would represent. The page also ends with a third level heading, followed by
no content at all. Also the two second level headings in the middle are inap-
propriately used because they actually contain text that is to it’s characteristics
more like ordinary page content, even though that may not be as obvious as
with the previous examples.

3.1.4 Emphasize and strong emphasize combined

In two instances emphasize and strong emphasize were combined producing a combina-
tion of bold and italic text. In figure 3.8 this is achieved while as in figure 3.9 strong
emphasize doesn’t have any visual effect, since the fact that the text was within a heading
made it bold by default. The fact that the affected word is a link makes it have a slightly
different color.

37

Figure 3.8: Emphasize and strong emphasize used in combination causing a combination
of both italic and bold text styling

Figure 3.9: A linked word in a heading, made italic because of emphasize usage, while
the use of strong emphasize has no visual effect since the fact that it’s a part
of a heading makes it bold already by default

38

3.2 Summary

Table 3.1: Number of instances with inappropriate markup, the amount of those instances
causing a visible as well as invisible results specified separately

Instances Invisible Visible
Paragraphs 5 0 5
Line breaks 9 7 2
Headings 5 0 5

Emphasize 2 9 2
Strong emphasize 2 1 1

Total 23 8 15

39

4 Analysis

4.1 Overview

Some of the inappropriately used markup may have been added by mistake, while as most
is very likely to have been added deliberately to affect the presentational outcome.

4.2 Unclear cases

4.2.1 Paragraphs and one heading

The empty paragraphs could easily have been added by mistake but are in most cases
quite likely to have been made deliberately to make up space. Figure 3.2 on page 33 on
the other hand looks like it could have contained content, but eventually would have been
left empty. First there is an empty heading followed by a paragraph, just as there would
be if the empty heading would have been a properly used one. This makes it look like it
could have been left like that by mistake.

4.3 Clear cases

4.3.1 Line breaks

The use of line breaks at the end of list items, headings and in one case a paragraph did not
cause any visual result as opposed to when put in the beginning of a heading. However
the Bitflux Editor requires its user to hold down the shift-button while pushing enter in
order to achieve a line break, which makes it unlikely that any of the line breaks would
have been added by mistake, even though not giving the supposedly expected visual result
in most cases.

40

4.3.2 Headings

Figure 3.7 on page 37 clearly shows that there is no reason to suspect that the inappro-
priately used headings (except for the one mentioned in 4.2.1) would have been made by
mistake. Figure 3.7 also shows that they gave a clearly visible visual result.

4.3.3 Emphasize and strong emphasize

There is no reason to suspect that emphasize and strong emphasize would have been
used for any other reason than a presentational. This also applies to the usage of strong
emphasize in figure 3.9 on page 38 even though it does not happen to produce any visible
result. The content editor is unlikely to have known that strong emphasize wouldn’t have
any visual effect within a heading, and the use of a combination of emphasize and strong
emphasize doesn’t semantically make sense either.

4.4 Conclusion

All inappropriate usage of markup except for the usage of empty paragraphs and in one
case an empty heading is more or less clearly deliberate, no matter whether it ended up
producing a visible result or not. Exceptionally clear is the intent behind the misuse of
headings to achieve certain text styling.

Even though the intent behind some of the cases remains a bit uncertain, it can be con-
cluded that in some cases the content editor’s ambition to control presentation is clearly
behind the usage of inappropriate markup.

Apparently even a WYSIWYG intended for structural content can mislead its user into
marking up the content according to presentation instead of semantic structure. The
WYSIWYG-concept in itself becomes misleading in such a context. In the case study
the content editor even received a briefing in semantic structuring, as explained in 2.8.1
on page 30. Even though these guidelines were followed to some extent, they were occa-
sionally ignored when needed in order to achieve a certain presentational effect.

41

5 Summary and discussion

5.1 Evaluation

The central argument1 that “separation of structure and presentation cannot be maintained
purely by technical means, while using a WYSIWYG such as the Bitflux Editor” was
proven. Even though the goal to prove that was attained, the method would have been
more accurate if the content editor’s intent with each action would have been monitored.
In theory even any inappropriately used markup could have been added by mistake, how-
ever in practice this is very unlikely since there seems to be a clear pattern of seeking
presentational effects behind most of it.

The assumption that there would be a connection between the visibility of the results and
the content editor’s intent however turned out to be false.

5.2 Recommendations

5.2.1 Abandon WYSIWYG for web content

Given that the WYSIWYG-concept initially was invented for print production, with one
single presentational outcome, it’s natural that it might not be fit for the Web. As discussed
in 2.4.3 on page 20, WYSIWYG:s sometimes do have their benefits due to superior cy-
bernetics2. With (HTML/XHTML-based) web content this is however not the case, since
the cybernetics remain false due to the multiple possible presentational outcomes. This
means that the user might get tricked into thinking that he or she has ultimate control
over how the content will look when presented. This ultimate control is impossible since
the content will look slightly different in different ordinary browsers and very different in
entirely different presentational media, such as mobile devices.

1See 1.3 on page 10
2feedback and control

42

Non-CMS contexts

Some non-HTML/XHTML page elements or file formats such as Flash-movies, images
and PDF-files are exceptional. These are generally not adapted to the different presen-
tational contexts in any way apart from being re-sized, if they’re viewable at all. They
lack the flexibility of HTML/XHTML-based web content, but gain the possibility of au-
thentic design cybernetics through a WYSIWYG. For example in an image manipulation
program the WYSIWYG-concept makes sense, as opposed to when editing text content
of HTML/XHTML-pages.

Stand-alone WYSIWYG-editors are often used to produce web content, there the
WYSIWYG-concept has the same downsides as in a CMS-context. WYSIWYG-usage
when designing templates for whole web sites, by web professionals knowledgeable of
document structuring, is on the other hand out of the scope of this thesis. The WYSIWYG-
concept might be useless or even harmful for them too, despite modern WYSIWYG:s
such as Dreamweaver being designed with web standards in mind. The findings here can’t
however be directly applied on that kind of usage, since they concern content editing and
not template design. A skilled web professional also knows that the WYSIWYG-view is
just a rough preview, and that browser testing is inevitable.

Structural WYSIWYG:s

The case study showed that even a WYSIWYG that emphasizes structural content tends
to sometimes have its user marking up the content according to presentation instead of
structure. This tendency to trick its user into marking up content according presentation
(by viewing something close to it) could be considered a usability flaw, since such a
WYSIWYG is indeed meant for structuring content. In the case study more thorough
instructions to the content editor could have helped, but that would still not have been a
remedy for the usability flaw itself.

One could of course try to prevent some of these mistakes from happening by having an
even stricter WYSIWYG, in the case of the Bitflux Editor by configuring its schema to
be even stricter about what markup is allowed in which contexts. This would however
not address the actual usability flaw either, only in some cases prevent the user from
succeeding to apply markup according to presentation.

Conclusion

WYSIWYG:s in general give the notion of control over presentation to its user and should
not be used when this notion is false, which it usually is when editing web content. By
providing tools for manipulation of structure while still showing presentation, a structural

43

WYSIWYG goes only half-way towards a solution. From a usability standpoint this kind
behavior doesn’t make any sense either.

The WYSIWYG-concept in itself seems to be the core problem, indirectly causing presen-
tational markup and thereby inconsistently structured content. Therefore the widespread
usage of WYSIWYG-editors in CMS-environments is highly questionable, and should be
reconsidered. In fact since most kinds of text content today (including non-web content)
should be re-usable in different presentational contexts, that content would be better off
managed through a structural editor as well.

5.2.2 Alternatives to WYSIWYG

The usability flaw of structural WYSIWYG:s could be corrected by making a WYSIWYG
show structure instead of how the page supposedly would look, but then it would have
been made into what we know as a WYSIWYM. A WYSIWYM could also show elements
more clearly and therefore avoid having the user mistakenly adding them, as opposed to a
WYSIWYG which strives to show the eventual outcome, in the case of the Bitflux Editor
leaving some of the changes made invisible to its user.

In some cases even editors more different from a WYSIWYG, such as one using wiki-
style markup or something similar like Textile could be tried. Also some system built
using traditional forms, having a different field for each element, could be tried out.

Using Textile instead of a WYSIWYG for the purpose of consistent markup seems to be
a somewhat successful solution:

I have set up a CMS for the intranet of a design-school here. I used Textile for
html-formatting. About 20 professors and teachers with extremely different
computer-skills are feeding content into this system. It turned out, that the
code all those people produce in this CMS is highly consistent and mostly free
of errors. None of these people had severe problems starting to use Textile,
but of course they needed instructions.

No WYSIWYG-editor works for people who don’t know what they’re doing.
It would have taken the same or higher effort for those people to learn how to
properly use a WYSIWYG-editor.

[rai(2007)]

A WYSIWYM or traditional forms however would probably be more self-explanatory
and require less or no instructions to the user.

In cases where the content editor should be allowed some control over the presentation
one could look into the concept of Presentation Management Systems (PMS), rather than

44

allowing the usage of less strict WYSIWYG:s. In most cases however the content editor
only needs control over content structure, since design issues usually should belong to
XHTML and CSS savvy web designers.

In any case there is always a possibility that the content editor might look at the visual
outcome by checking a page in a browser right after editing it, therefore being able to
do further adjustments according to the visual outcome. No technical restrictions such as
having only a non-WYSIWYG structural editor provided could prevent this from happen-
ing. Only having a workflow involving a separate moderator for content approval could
prevent browser previewing. Using a structural editor such as a WYSIWYM in case stud-
ies otherwise similar to the one discussed here could clarify whether this would pose a
problem in reality. Monitoring of the user’s behavior would make sense in such a test
case, to verify whether test and editing iterations take place.

In addition to technical solutions more thorough education of the content editor than in
the case study of this thesis could be wise, not only education about semantics but also
about how to write good web texts in general. Education about semantics would be espe-
cially important if browser checking would cause problems concerning the proper usage
structural editors.

Relying on a WYSIWYG-editor to solve these kinds of problems is not, then, a sensible
solution. It will often create more, and more serious, problems, than it solves.

45

Bibliography

[WCA(1999)] Web content accessibility guidelines 1.0. www, May 1999. URL http:

//www.w3.org/TR/WAI-WEBCONTENT/.

[rai(2007)] Ruby on rails based cms in ruby on rails. www, August 2007. URL
http://wiki.rubyonrails.org/rails/pages/Ruby+on+Rails+

based+CMS.

[wik(2007)] Wysiwyg. www, August 2007. URL http://en.wikipedia.org/

wiki/Wysiwyg.

[Berners-Lee(2000)] Tim Berners-Lee. Weaving the Web: The Original Design and

Ultimate Destiny of the World Wide Web. Collins, 1 edition, 11 2000. ISBN
006251587X.

[Group(2004)] W3C Technical Architecture Group. Architecture of the word wide web,
volume one. www, December 2004. URL http://www.w3.org/TR/2004/

REC-webarch-20041215/.

[Ho(2005)] Tong Ho. A scriptable xml editor with multiple css configurable views. Tech-
nical report, The Faculty of the Department of Computer Science, San Jose State
University, 2005.

[Initiative(2006)] Web Accessibility Initiative. Policies relating to web accessibility, Au-
gust 2006. URL http://www.w3.org/WAI/Policy/.

[Lie and Bos(1999)] Håkon Wium Lie and Bert Bos. Cascading Style Sheets: Designing

for the Web (2nd Edition). Addison-Wesley Professional, 2 edition, 7 1999. ISBN
0201596253. URL http://www.w3.org/Style/LieBos2e/history/.

[Lombardi(2004)] Victor Lombardi. Integrating css with content management systems.
www, September 2004. URL http://www.digital-web.com/articles/

integrating_css_with_cms/.

[Meyer(2006)] Eric Meyer. CSS: The Definitive Guide. O’Reilly Media, Inc., 3 edition,
11 2006. ISBN 0596527330.

46

[Musciano and Kennedy(2006)] Chuck Musciano and Bill Kennedy. HTML & XHTML:

The Definitive Guide (6th Edition). O’Reilly Media, Inc., 6 edition, 10 2006. ISBN
0596527322.

[Nielsen(1997)] Jakob Nielsen. The difference between web design and gui design, May
1997. URL http://www.useit.com/alertbox/9705a.html.

[Schrage(2004)] Martijn Michiel Schrage. Proxima: A presentation-oriented editor for

structured documents. PhD thesis, Universiteit Utrecht, October 2004.

[Spiesser and Kitchen(2004)] Jacqueline Spiesser and Les Kitchen. Optimization of html
automatically generated by wysiwyg programs. Technical report, Department of
Computer Science and Software Engineering, The University of Melbourne, 2004.

[Stocker(2005)] Christian Stocker. Bitflux editor users mailing list. www,
November 2005. URL http://lists.bitflux.ch/pipermail/

bx-editor-users/2005-November/000332.html.

[Taylor(1996)] Conrad Taylor. What has “wysiwyg” done to us? The Seybold Report on

Publishing Systems, 26(2), September 1996. URL http://www.ideography.

co.uk/library/seybold/WYSIWYG.html.

[Zeldman(2001)] Jeffrey Zeldman. Taking Your Talent to the Web: Making the Transition

from Graphic Design to Web Design. Waite Group Press, 1st edition, 5 2001. ISBN
0735710732.

[Zeldman(2006)] Jeffrey Zeldman. Designing with Web Standards (2nd Edition). Peach-
pit Press, 2 edition, 7 2006. ISBN 0321385551. URL http://www.zeldman.

com/dwws/.

47

