
A summary of the thesis Difficulties maintaining separation of structure and presentation

while using a browser based WYSIWYG-editor

WYSIWYG and web content

Simon Rönnqvist

September 4, 2007

2

This is a summary of the Bachelor of Arts degree thesis:

Difficulties maintaining separation of structure and presentation while using a browser

based WYSIWYG-editor

Copyright c© 2007 Simon Rönnqvist
Some Rights Reserved.

This thesis summary is like the thesis itself licensed under a Creative Commons Attribution-

Noncommercial-Share Alike 3.0 License available from http://creativecommons.

org/licenses/by-nc-sa/3.0/.

Accordingly, you are free to:

• to Share – to copy, distribute and transmit the work

• to Remix – to adapt the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

• Noncommercial. You may not use this work for commercial purposes.

• Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

Permissions beyond the scope of this license may be available upon request from the
author. Contact information and material related to the thesis is found here:

http://simon.fi/thesis

2

According to recommendations by the World Wide Web Consortium (W3C) one should
structure web content (using XHTML) according to semantic meaning and separately
control how certain kinds of elements should be presented (using CSS). WYSIWYG-
editors in CMS-environments tend to cause inconsistencies because they allow their users
to within the content define the looks of each element that they are editing. A WYSI-
WYG which instead is intended for structuring content semantically is the Bitflux Editor.
The thesis showed through a case study how a user of the Bitflux Editor was mislead by
its WYSIWYG-nature to mark up content according to presentation instead of semantic
meaning. (E.g. headings were used to achieve certain text styles.) Thus it was con-
cluded that the WYSIWYG-concept is unsuitable for CMS-usage and for web content in
general, since it causes inconsistency. The case study examined the troubadour Håkan
Streng’s web site, which represented a rather typical web site with mostly text content.
Also a usability problem in WYSIWYG-editors intended for structural content was iden-
tified; they show presentation but expect their users to think according to structure. It was
concluded that the solution to both this usability problem and to the problem with incon-
sistently marked up content could be having purely structural editors, that instead show
the document structure while editing. One such concept is called WYSIWYM (What
You See Is What You Mean), which could be tried as a replacement for WYSIWYG:s in
CMS-contexts.

Contents

1 Introduction 5
1.1 Basic concepts . 5
1.2 Case background . 6
1.3 Goal . 6

2 Case study 7
2.1 XHTML used in the case study . 7
2.2 Results . 8
2.3 Analysis . 8

2.3.1 Overview . 8
2.3.2 Unclear cases . 8
2.3.3 Clear cases . 9
2.3.4 Conclusion . 11

3 Summary and discussion 12
3.1 Evaluation . 12
3.2 Recommendations . 12

3.2.1 Abandon WYSIWYG for web content 12
3.2.2 Alternatives to WYSIWYG . 14

4

1 Introduction

1.1 Basic concepts

Content management systems (CMS) are often equipped with so called WYSIWYG1-
editors (from now on referred to as WYSIWYG). A WYSIWYG works in some ways
like an ordinary word processor, striving to show the content editor what the end result
would look like in real-time while editing.

A WYSIWYG often lets the content editor separately define the looks of each element.
If this kind of functionality is used, it leads to poor separation of document structure2 and
presentation3.

When defining presentation separately one defines how certain kinds of structural ele-
ments should be presented (in certain kinds of media if you wish). In practice poor sepa-
ration of structure and presentation can lead to inconsistent looks of a site. It can also lead
to problems when redesigning a site, since the presentational control isn’t centralized.
In some cases one would also want different styling for different presentational media,
which is almost impossible if the presentation isn’t defined separately.

The World Wide Web Consortium (W3C), lead by the inventor of the Web TIM BERNERS-
LEE, develops web standards such as XHTML4 (for structuring content) and CSS5 (for
defining presentation). Using web standards according to their recommendations is com-
monly referred to as standards based web design, or standards compliant web design.
Keeping structure and presentation separate is a central part of standards based web de-
sign.

1What You See Is What You Get
2Structural elements are e.g. main headings, sub-headings and links.
3Presentation is how a document should be presented in a certain media, e.g. screen, print, screen readers

or handheld devices.
4eXtensible Hyper-Text Markup Language
5Cascading Style Sheets

5

1.2 Case background

My production is the troubadour Håkan Streng’s web site. The site is quite an ordinary
kind of site, with mostly text content. The site utilizes a CMS equipped with a WYSI-
WYG for the content editor to use.

The production is an attempt to maintain separation of structure and presentation by using
an in this respect strict WYSIWYG. One of the few web based WYSIWYG:s of today that
validate the structure of the content when editing is the Bitflux Editor, and it is therefore
used in the production. It is used within Flux CMS, the web based CMS for which it’s
primarily developed.

1.3 Goal

Due to the live validation the Bitflux Editor manages to maintain a valid XHTML 1.0
Strict6 document structure in the production mentioned above. XHTML 1.0 Strict forbids
use of obsolete7 presentational markup8. The central argument of my thesis is that separa-
tion of structure and presentation cannot be maintained purely by technical means, while
using a WYSIWYG such as the Bitflux Editor.

My analysis will consist of mapping out what kinds of failures to maintain a separation
of structure and presentation occurred, in spite of the strict nature of the Bitflux Editor.
I will later also discuss possible ways to avoid these problems. The target group for the
thesis and this summary is people working with standards based web design for CMS-
based sites, in other words basically anyone making a modern web site. Basic knowl-
edge of XHTML is assumed, though some brief explanations are given on the XHTML-
terminology needed to understand the thesis.

6XHTML 1.0 The Extensible HyperText Markup Language http://www.w3.org/TR/xhtml1/
7Some versions of XHTML’s predecessor HTML was to some extent intended to specify presentational

aspects of a web page. This kind of features have later been deprecated and are no longer allowed at all
in XHTML 1.0 and 1.1 Strict.

8XHTML, the predecessor HTML and even it’s predecessor SGML (used in print) are commonly referred
to as markup.

6

2 Case study

2.1 XHTML used in the case study

Although basic knowledge of XHTML is assumed one can indeed follow the case study
by being familiar with the concepts previously presented, along with just the few XHTML
elements. Therefore those few XHTML elements are presented here, along with a very
brief explanation of how XHTML (and in fact other XML) documents are structured:

All of the XHTML elements below except for line break and image wrap content. Wrap-
ping means that they consist of one opening tag <something> and a closing tag </some-

thing>, with the wrapped content in between the tags. The wrapped content can also
contain other tags. XHTML-tags (also referred to as markup) can also contain attributes
according to this format <sometag someattribute=”something”>, as far as the thesis is
concerned the attributes in the code samples can be ignored, since they’re not discussed
any further.

<p> paragraph - wraps paragraphs

 line break - used to enforce line breaks in certain places in a text

<hn> heading - wraps headings, n is a number representing the heading level, e.g.
<h1> for main headings, <h2> for sub-headings and so forth

 emphasize - wraps emphasized words or phrases

 strong emphasize - wraps strongly emphasized words or phrases

& unordered lists - wraps the whole unordered list (normally presented as
a bulleted list) and wraps each list item

<a> anchor - wraps linked words

 image - refers to an image document that will be shown where the tag is
placed

7

2.2 Results

All markup that from a semantic point of view wasn’t appropriate was noted. This markup
is then analyzed to find out to what extent this markup was made with the presentational
result in mind, as shown by the Bitflux Editor.

Table 2.1: Number of instances with inappropriate markup
Instances

Paragraphs 5
Line breaks 9
Headings 5

Emphasize 2
Strong emphasize 2

Total 23

2.3 Analysis

2.3.1 Overview

Some of the inappropriately used markup may have been added by mistake, while as most
is very likely to have been added deliberately to affect the presentational outcome.

2.3.2 Unclear cases

Paragraphs and one heading

The empty paragraphs could easily have been added by mistake but are in most cases
quite likely to have been made deliberately to make up space. Figure 2.1 on the following
page on the other hand looks like it could have contained content, but eventually would
have been left empty. First there is an empty heading followed by a paragraph, just as
there would be if the empty heading would have been a properly used one. This makes it
look like it could have been left like that by mistake.

8

Figure 2.1: An empty heading in combination with an empty paragraph, making empty
space

2.3.3 Clear cases

Line breaks

The use of line breaks at the end of list items, headings and in one case a paragraph did not
cause any visual result as opposed to when put in the beginning of a heading. However
the Bitflux Editor requires its user to hold down the shift-button while pushing enter in
order to achieve a line break, which makes it unlikely that any of the line breaks would
have been added by mistake, even though not giving the supposedly expected visual result
in most cases.

Headings

Figure 2.2 on the next page clearly shows that there is no reason to suspect that the inap-
propriately used headings (except for the one mentioned in 2.3.2) would have been made
by mistake. Figure 2.2 also shows that they gave a clearly visible visual result.

9

Figure 2.2: The first third level sub-heading is obviously inappropriately used since it’s di-
rectly followed by a second level sub-heading instead of some content which
it would represent. The page also ends with a third level heading, followed by
no content at all. Also the two second level headings in the middle are inap-
propriately used because they actually contain text that is to it’s characteristics
more like ordinary page content, even though that may not be as obvious as
with the previous examples.

Emphasize and strong emphasize

There is no reason to suspect that emphasize and strong emphasize would have been used
for any other reason than a presentational. This also applies to the usage of strong em-
phasize in figure 2.3 on the following page, even though it does not happen to produce
any visible result. The content editor is unlikely to have known that strong emphasize
wouldn’t have any visual effect within a heading, and the use of a combination of empha-
size and strong emphasize doesn’t semantically make sense either.

10

Figure 2.3: A linked word in a heading, made italic because of emphasize usage, while
the use of strong emphasize has no visual effect since the fact that it’s a part
of a heading makes it bold already by default

2.3.4 Conclusion

All inappropriate usage of markup except for the usage of empty paragraphs and in one
case an empty heading is more or less clearly deliberate, no matter whether it ended up
producing a visible result or not. Exceptionally clear is the intent behind the misuse of
headings to achieve certain text styling.

Even though the intent behind some of the cases remains a bit uncertain, it can be con-
cluded that in some cases the content editor’s ambition to control presentation is clearly
behind the usage of inappropriate markup.

Apparently even a WYSIWYG intended for structural content can mislead its user into
marking up the content according to presentation instead of semantic structure. The
WYSIWYG-concept in itself becomes misleading in such a context. In the case study
the content editor even received a briefing in semantic structuring. Even though these
guidelines were followed to some extent, they were occasionally ignored when needed in
order to achieve a certain presentational effect.

11

3 Summary and discussion

3.1 Evaluation

The central argument1 that “separation of structure and presentation cannot be maintained
purely by technical means, while using a WYSIWYG such as the Bitflux Editor” was
proven. Even though the goal to prove that was attained, the method would have been
more accurate if the content editor’s intent with each action would have been monitored.
In theory even any inappropriately used markup could have been added by mistake, how-
ever in practice this is very unlikely since there seems to be a clear pattern of seeking
presentational effects behind most of it.

3.2 Recommendations

3.2.1 Abandon WYSIWYG for web content

Given that the WYSIWYG-concept initially was invented for print production, with one
single presentational outcome, it’s natural that it might not be fit for the Web. WYSI-
WYG:s sometimes do have their benefits due to superior cybernetics2. With (HTML/XHTML-
based) web content this is however not the case, since the cybernetics remain false due to
the multiple possible presentational outcomes. This means that the user might get tricked
into thinking that he or she has ultimate control over how the content will look when pre-
sented. This ultimate control is impossible since the content will look slightly different in
different ordinary browsers and very different in entirely different presentational media,
such as mobile devices.

Non-CMS contexts

Some non-HTML/XHTML page elements or file formats such as Flash-movies, images
and PDF-files are exceptional. These are generally not adapted to the different presen-
tational contexts in any way apart from being re-sized, if they’re viewable at all. They

1See 1.3 on page 6
2feedback and control

12

lack the flexibility of HTML/XHTML-based web content, but gain the possibility of au-
thentic design cybernetics through a WYSIWYG. For example in an image manipulation
program the WYSIWYG-concept makes sense, as opposed to when editing text content
of HTML/XHTML-pages.

Stand-alone WYSIWYG-editors are often used to produce web content, there the
WYSIWYG-concept has the same downsides as in a CMS-context. WYSIWYG-usage
when designing templates for whole web sites, by web professionals knowledgeable of
document structuring, is on the other hand out of the scope of the thesis. The WYSIWYG-
concept might be useless or even harmful for them too, despite modern WYSIWYG:s
such as Dreamweaver being designed with web standards in mind. The findings here can’t
however be directly applied on that kind of usage, since they concern content editing and
not template design. A skilled web professional also knows that the WYSIWYG-view is
just a rough preview, and that browser testing is inevitable.

Structural WYSIWYG:s

The case study showed that even a WYSIWYG that emphasizes structural content tends
to sometimes have its user marking up the content according to presentation instead of
structure. This tendency to trick its user into marking up content according presentation
(by viewing something close to it) could be considered a usability flaw, since such a
WYSIWYG is indeed meant for structuring content. In the case study more thorough
instructions to the content editor could have helped, but that would still not have been a
remedy for the usability flaw itself.

One could of course try to prevent some of these mistakes from happening by having an
even stricter WYSIWYG, in the case of the Bitflux Editor by configuring its schema to
be even stricter about what markup is allowed in which contexts. This would however
not address the actual usability flaw either, only in some cases prevent the user from
succeeding to apply markup according to presentation.

Conclusion

WYSIWYG:s in general give the notion of control over presentation to its user and should
not be used when this notion is false, which it usually is when editing web content. By
providing tools for manipulation of structure while still showing presentation, a structural
WYSIWYG goes only half-way towards a solution. From a usability standpoint this kind
behavior doesn’t make any sense either.

The WYSIWYG-concept in itself seems to be the core problem, indirectly causing presen-
tational markup and thereby inconsistently structured content. Therefore the widespread

13

usage of WYSIWYG-editors in CMS-environments is highly questionable, and should be
reconsidered. In fact since most kinds of text content today (including non-web content)
should be re-usable in different presentational contexts, that content would be better off
managed through a structural editor as well.

3.2.2 Alternatives to WYSIWYG

The usability flaw of structural WYSIWYG:s could be corrected by making a WYSI-
WYG show structure instead of how the page supposedly would look, but then it would
have been made into what is known as a WYSIWYM3. A WYSIWYM could also show
elements more clearly and therefore avoid having the user mistakenly adding them, as
opposed to a WYSIWYG which strives to show the eventual outcome, in the case of the
Bitflux Editor leaving some of the changes made invisible to its user.

In some cases even editors more different from a WYSIWYG, such as one using wiki-
style4 markup or something similar like Textile5 could be tried. Also some system built
using traditional forms, having a different field for each element, could be tried out.

Using Textile instead of a WYSIWYG for the purpose of consistent markup seems to be
a somewhat successful solution:

I have set up a CMS for the intranet of a design-school here. I used Textile for
html-formatting. About 20 professors and teachers with extremely different
computer-skills are feeding content into this system. It turned out, that the
code all those people produce in this CMS is highly consistent and mostly free
of errors. None of these people had severe problems starting to use Textile,
but of course they needed instructions.

No WYSIWYG-editor works for people who don’t know what they’re doing.
It would have taken the same or higher effort for those people to learn how to
properly use a WYSIWYG-editor.

Source http://wiki.rubyonrails.org/rails/pages/Ruby+on+
Rails+based+CMS

A WYSIWYM or traditional forms however would probably be more self-explanatory
and require less or no instructions to the user.

3A WYSIWYM (What You See Is What You Mean) shows what the different structural elements are, not
how they’ll eventually be presented. Recently a web based WYSIWYM called WYMeditor http:
//www.wymeditor.org/ was released, and new versions are released frequently.

4A wiki-style editor lets the user edit plain text with a somewhat simplified markup compared to HTML
or XHTML.

5http://textism.com/tools/textile/

14

In cases where the content editor should be allowed some control over the presentation
one could look into the concept of Presentation Management Systems (PMS)6, rather than
allowing the usage of less strict WYSIWYG:s. In most cases however the content editor
only needs control over content structure, since design issues usually should belong to
XHTML and CSS savvy web designers.

In any case there is always a possibility that the content editor might look at the visual
outcome by checking a page in a browser right after editing it, therefore being able to
do further adjustments according to the visual outcome. No technical restrictions such as
having only a non-WYSIWYG structural editor provided could prevent this from happen-
ing. Only having a workflow involving a separate moderator for content approval could
prevent browser previewing. Using a structural editor such as a WYSIWYM in case stud-
ies otherwise similar to the one discussed here could clarify whether this would pose a
problem in reality. Monitoring of the user’s behavior would make sense in such a test
case, to verify whether test and editing iterations take place.

In addition to technical solutions more thorough education of the content editor than in
the case study of the thesis could be wise, not only education about semantics but also
about how to write good web texts in general. Education about semantics would be espe-
cially important if browser checking would cause problems concerning the proper usage
structural editors.

Relying on a WYSIWYG-editor to solve these kinds of problems is not, then, a sensible
solution. It will often create more, and more serious, problems, than it solves.

6A tool used to control certain parts of the centralized presentation (CSS) http://www.
digital-web.com/articles/integrating_css_with_cms/

15

